8 research outputs found

    Vaginal microbiome-hormonal contraceptive interactions associate with the mucosal proteome and HIV acquisition.

    Get PDF
    Alterations to the mucosal environment of the female genital tract, such as genital inflammation, have been associated with increased HIV acquisition in women. As the microbiome and hormonal contraceptives can affect vaginal mucosal immunity, we hypothesized these components may interact in the context of HIV susceptibility. Using previously published microbiome data from 685 women in the CAPRISA-004 trial, we compared relative risk of HIV acquisition in this cohort who were using injectable depot medroxyprogesterone acetate (DMPA), norethisterone enanthate (NET-EN), and combined oral contraceptives (COC). In women who were Lactobacillus-dominant, HIV acquisition was 3-fold higher in women using DMPA relative to women using NET-EN or COC (OR: 3.27; 95% CI: 1.24-11.24, P = 0.0305). This was not observed in non-Lactobacillus-dominant women (OR: 0.95, 95% CI: 0.44-2.15, P = 0.895) (interaction P = 0.0686). Higher serum MPA levels associated with increased molecular pathways of inflammation in the vaginal mucosal fluid of Lactobacillus-dominant women, but no differences were seen in non-Lactobacillus dominant women. This study provides data suggesting an interaction between the microbiome, hormonal contraceptives, and HIV susceptibility

    The neovaginal microbiome of transgender women post-gender reassignment surgery

    No full text
    BackgroundGender reassignment surgery is a procedure some transgender women (TW) undergo for gender-affirming purposes. This often includes the construction of a neovagina using existing penile and scrotal tissue and/or a sigmoid colon graft. There are limited data regarding the composition and function of the neovaginal microbiome representing a major gap in knowledge in neovaginal health.ResultsMetaproteomics was performed on secretions collected from the neovaginas (n = 5) and rectums (n = 7) of TW surgically reassigned via penile inversion/scrotal graft with (n = 1) or without (n = 4) a sigmoid colon graft extension and compared with secretions from cis vaginas (n = 32). We identified 541 unique bacterial proteins from 38 taxa. The most abundant taxa in the neovaginas were Porphyromonas (30.2%), Peptostreptococcus (9.2%), Prevotella (9.0%), Mobiluncus (8.0%), and Jonquetella (7.2%), while cis vaginas were primarily Lactobacillus and Gardnerella. Rectal samples were mainly composed of Prevotella and Roseburia. Neovaginas (median Shannon's H index = 1.33) had higher alpha diversity compared to cis vaginas (Shannon's H = 0.35) (p = 7.2E-3, Mann-Whitney U test) and were more similar to the non-Lactobacillus dominant/polymicrobial cis vaginas based on beta diversity (perMANOVA, p = 0.001, r2 = 0.342). In comparison to cis vaginas, toll-like receptor response, amino acid, and short-chain fatty acid metabolic pathways were increased (p < 0.01), while keratinization and cornification proteins were decreased (p < 0.001) in the neovaginal proteome.ConclusionsPenile skin-lined neovaginas have diverse, polymicrobial communities that show similarities in composition to uncircumcised penises and host responses to cis vaginas with bacterial vaginosis (BV) including increased immune activation pathways and decreased epithelial barrier function. Developing a better understanding of microbiome-associated inflammation in the neovaginal environment will be important for improving our knowledge of neovaginal health. Video Abstract

    Increased genital mucosal cytokines in Canadian women associate with higher antigen-presenting cells, inflammatory metabolites, epithelial barrier disruption, and the depletion of L. crispatus

    No full text
    Abstract Background Cervicovaginal inflammation has been linked to negative reproductive health outcomes including the acquisition of HIV, other sexually transmitted infections, and cervical carcinogenesis. While changes to the vaginal microbiome have been linked to genital inflammation, the molecular relationships between the functional components of the microbiome with cervical immunology in the reproductive tract are understudied, limiting our understanding of mucosal biology that may be important for reproductive health. Results In this study, we used a multi’-omics approach to profile cervicovaginal samples collected from 43 Canadian women to characterize host, immune, functional microbiome, and metabolome features of cervicovaginal inflammation. We demonstrate that inflammation is associated with lower amounts of L. crispatus and higher levels of cervical antigen-presenting cells (APCs). Proteomic analysis showed an upregulation of pathways related to neutrophil degranulation, complement, and leukocyte migration, with lower levels of cornified envelope and cell-cell adherens junctions. Functional microbiome analysis showed reductions in carbohydrate metabolism and lactic acid, with increases in xanthine and other metabolites. Bayesian network analysis linked L. crispatus with glycolytic and nucleotide metabolism, succinate and xanthine, and epithelial proteins SCEL and IVL as major molecular features associated with pro-inflammatory cytokines and increased APCs. Conclusions This study identified key molecular and immunological relationships with cervicovaginal inflammation, including higher APCs, bacterial metabolism, and proteome alterations that underlie inflammation. As APCs are involved in HIV transmission, parturition, and cervical cancer progression, further studies are needed to explore the interactions between these cells, bacterial metabolism, mucosal immunity, and their relationship to reproductive health. Video Abstrac
    corecore